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We study the influence of delayed optical feedback from a short external cavity on the emission dynamics of
semiconductor lasers using the Lang and Kobayashi rate equation model. A combination of numerical integra-
tion and continuation techniques allows us to bring new light into the bifurcation scenario leading to the
regular pulse packages(RPP) regime. We give examples of bistability between RPP and time-periodic or
steady state solutions. Our bifurcation study of RPP regime is complemented by an analysis of the dependency
of the RPP period on the laser and feedback parameters. We qualitatively study this new dynamical regime by
plotting a two-dimensional map in the feedback parameters space. The occurrence of RPP is furthermore
associated with a topological change in the bifurcation diagram and accompanied by the creation of a new type
of bifurcation bridge between a mode and an antimode.
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I. INTRODUCTION

When inserted in any optical system, semiconductor la-
sers(SLs) are inevitably subject to optical feedback(OF),
i.e., external reflection of the light which re-enters the laser
cavity after a certain delay time. Such time-delayed OF
might significantly affect the stable laser operation and in-
duce complex dynamics, such as self-pulsations[1], multi-
stability [2] and chaos[3,4]. For most applications in which
a stable laser operation is indispensable, i.e., in data trans-
mission, the instabilities induced by OF must be avoided by
means of expensive optical isolators. Alternatively, high sen-
sitivity of SLs to OF can also be used in a constructive way:
optical feedback can narrow the linewidth of the emitted
light [5,6] and may also be used for chaotic encryption[7],
optical data readout and frequency tuning[8,9].

Most of the theoretical analysis of the influence of de-
layed OF from an external cavity(EC) on the emission dy-
namics of SL is based on the Lang-Kobayashi(LK ) approach
[10]. It accounts for one longitudinal laser mode and one
roundtrip in the EC. In dimensionless form the LK equations
read[11]

Ėssd = s1 + iadNEssd + he−ivuEss− ud, s1d

TṄ= J − N − s1 + 2NduEssdu2, s2d

whereEssd=ÎPssdeifssd, stands for the electric field,P andf
being the power and the phase of the light wave, andN is the
excess carrier number. In these equations, the dimensionless
time s is in units of photon lifetimetpss; t /tpd. The param-
etersT andu are defined asT;tn/tp andu;t /tp wheretn
andt are the carrier lifetime and the external round-trip time,
respectively.v;v0tp andh;gtp are the dimensionless an-

gular frequency of the solitary laser and the feedback rate,
respectively.J is the excess pump current proportional to
sJ0/Jth,sol−1d anda is the linewidth enhancement factor. The
steady-state solutions of these equations are the so-called ex-
ternal cavity modes(ECMs). In theffssd−fss−ud ,Ng plane,
ECMs lie on an ellipse given by the equation[12]

sfssd − fss− ud − auNd2 + suNd2 = shud2. s3d

The right-hand side of Eq.(3), i.e., the product of the feed-
back strengthh and the delayu, determines the characteris-
tics of this ellipse and the number of existing ECMs. It is
well known that as we increase this product, ECMs appear in
pairs through saddle-node bifurcation and one of the newly
created ECMs is potentially stable(and therefore called
mode) and the other one is always unstable(called anti-
mode). The stable modes are located in the lower branch of
the ellipse, whereas antimodes are situated in the upper one.

Extensive experimental and theoretical investigations
over the last three decades show that qualitatively different
dynamical regimes are observed depending on the feedback
strengthh [13] and/or the length of the EC[14]. Usually, we
say that the length of the EC is long(short) if the corre-
sponding EC round trip timeu is larger (smaller) than the
relaxation oscillation periodTRO;pÎ2T/J [14,15]. In the
case of long EC and moderate feedback rates, the stable
emission of the SL is easily destabilized and chaotic regimes
arise. Typically observed chaotic dynamics in the long cavity
regime are the so-called low-frequency fluctuations(LFF)
[16,17], which manifest as sporadic and sudden dropouts of
the light intensity followed by successive, much slower step-
wise return to maximal power. The regime of LFF anticipates
another intriguing regime that is the coherence collapse(CC)
regime[18]. It is usually found by either increasing the pump
current or increasing the EC delay time once the LFF regime
was found. CC can be recognized by a significant broadening
of the optical linewidth up to a few tens of GHz.

In contrast to these long EC feedback instabilities, short
EC dynamics is expected to be less complicated because of
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the reduced number of ECMs. However, lasers with short
external cavity have recently been found to exhibit interest-
ing dynamics. For example, it has been shown theoretically
in Refs.[14,19] that laser diodes with short EC can generate
microwave oscillations of the emitted power due to a beating
between a stable ECM and an antimode. Also stable oscilla-
tions corresponding to a beating between two stable ECMs
[20–22], high frequency pulsating solutions emerging from a
subcritical Hopf bifurcation[23,24] and chaotic dynamics
[25] have been reported in SL with short EC feedback.

In this paper we analyze another dynamical behavior of
laser diodes subject to short EC optical feedback, which is
called regular pulse packages or RPP. We build upon unprec-
edented insight into the dynamics in short EC that was pre-
sented in Refs.[15,26]. We remind the reader of the RPP
dynamics in Fig. 1. It corresponds to the emission of high
intensity pulses separated by the delay timeu and that are
modulated by a slower, time-periodic envelope; see Fig. 1(a).
During one RPP cycle the system follows the same path
visiting different ECMs in the direction to the maximum gain
ECM (MGM); see Fig. 1(b). Then the laser system is re-
pelled across the unstable branch of the ECM ellipse induc-
ing the phase shift to the direction of ECM with largerN.
Heil et al. in Ref. [15] briefly compared the RPP dynamics
with the dynamics observed in the LFF regime. In both
cases, low frequency phenomena are present connected with
a global trajectory along several attractor ruins and produc-
ing pulses when visiting each of them. What makes RPP
distinct from LFF is the sensitivity to phase of the back-
reflected light[26]. The transition from RPP to LFF occurs
when the delay becomes larger than the RO period.

In this paper we throw more light into the bifurcation
origin and the main dynamical properties of the RPP regime.
In Sec. II we numerically investigate the bifurcation transi-
tion to RPP dynamics, i.e., the qualitatively different dynam-

ics that are involved. Our analysis allows us to unveil differ-
ent cases of bistability between RPP and steady-state or time-
periodic dynamics and also shows that the slow envelope of
RPP may experience several period-doubling bifurcations.
As we increase the feedback rate, the windows of RPP pro-
gressively merge to a continuous region of RPP, which we
analyze in more details through a two-dimensional map in
the plane of the feedback parameters in Sec. III. We reveal
that the largest region of RPP occurs “in the middle of the
short EC regime,” i.e., for values of the EC delay time close
to half of the RO period. Hereafter, we also analyze how the
interplay between the system trajectory in the phase space
and the creation of new ECMs governs the dependency of
the period of the pulse package envelope on the laser and
feedback parameters. Finally, a computation of the unstable
branches of steady-state and time-periodic solutions in Sec.
IV allows us to relate the occurrence of RPP dynamics with
the destruction of a Hopf bifurcation bridge between a mode
and an antimode and the creation of a new mode-antimode
bridge with a different topology. Our results are summarized
in Sec. V.

II. BIFURCATION TRANSITION TO RPP

The bifurcation transition leading to RPP dynamics is ana-
lyzed in Figs. 2 and 3. We take the feedback rateh as a
bifurcation parameter while the other parameters remain
fixed. Figure 2 shows time traces of the intensityP [panels
(1)] and the corresponding phase portraits of the excess car-
rier numberN as a function of phase differencefssd−fss
−ud [panels(2)]. As we already mentioned in Sec. I, ECMs
appear in pairs of modes and antimodes as we increaseh and
they lie on an ellipse in the phase space. The modes are
represented by triangles and the antimodes by circles. In Fig.
3 we plot the bifurcation diagrams of the laser intensity, i.e.,
the successive extrema of the laser intensity as we vary the
feedback rateh upwards[Fig. 3(a)] and downwards[Fig.
3(b)], respectively. The labels in Fig. 3 refer to the dynamics
analyzed in Fig. 2.

We start our bifurcation analysis from the time periodic
solution shown in Fig. 2(a) and which has emerged from the
destabilization of the MGM through a Hopf bifurcation; see
also Fig. 3. When increasing the feedback rateh the time-
periodic solution destabilizes to quasiperiodic dynamics[Fig.
2(b)], i.e., the system trajectory lies on a torus which is re-
stricted to the nearest area around the destabilized MGM. In
Fig. 3 this quasiperiodic attractor(label b) is hidden by the
irregular pulse package dynamics(label c).

We find that for the sameh the quasiperiodic solution
[Fig. 2(b)] may coexist with a qualitatively different dynam-
ics in which the laser emits packages of pulses[Fig. 2(c)].
The laser intensity exhibits pulsations at the EC frequency,
which are modulated by a slower envelope. In the time of the
pulse package, ECMs are visited in direction to the MGM. In
the vicinity of the MGM, the phase trajectory spirals many
times around the compound cavity modes while being
shifted towards antimodes after each spiralling motion. The
system trajectory then collides with an antimode and is sud-
denly repelled towards the center of the ellipse[Fig. 2(c2)].

FIG. 1. Numerically computed trajectory in the RPP dynamics
using the LK model. We have plotted in(a) the time trace of inten-
sity P variations in time measured in units of the delayu and in(b)
phase portrait in theffssd−fss−ud ,Ng space. Modes are repre-
sented by triangles and antimodes by circles. Numbers indicate dis-
tinct moment in time during RPP. The parameters areJ=1.155,h
=0.135,u=70, a=5, andvu=−arctana.
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Quite similar type of dynamics has also been observed for
the case of the long external cavity chaotic LFF regime[27].
This dynamics appears all of a sudden and has been associ-
ated with an interior crisis[28] of the laser system in which
a sudden increase of the size of a chaotic attractor takes
place; see(b) and (c) in Figs. 2 and 3. What makes RPP
unique is that in RPP the collision always takes place in the
vicinity of the same compound cavity mode whereas in the
LFF case the antimode which initiates the collision changes
from one LFF cycle to another one. The bifurcation diagram
in Fig. 3(a) suggests also a presence of a boundary crisis in
the system[28] which causes a sudden disappearance of RPP
dynamics ash is increased; see(g) and(h) in Figs. 2 and 3.

Since there is not a clear borderline between those two
short and long dynamical regimes there must be a continuous
transition from short to long external cavity regime. This
transition is accompanied with progressive change of the
shape of the pulse packages envelope followed by progres-
sive lack of periodicity[24,29]. This transition roughly oc-
curs whenu is close to the RO period[15], which for our
parameters is close to 170. In Fig. 2(c) the pulse packages
are not yet regular. With further increase ofh the quasiperi-
odic attractor disappears and RPP is observed; see Fig. 2(d).
In the RPP regime the laser system always follows the same
trajectory in the phase space visiting only some ECMs. This
RPP regime corresponds to the label(d) in Fig. 3. Since the
maxima of the pulses are always at the same intensity level
from pulse package to pulse package, the occurrence of con-
tinuous regions of RPP yields a set of parallel lines in the
bifurcation diagram.

With increasing the feedback strength RPP may undergo a
period doubling bifurcation cascade. Period-two RPP, i.e.,
first RPP repeats every two cycles, is shown in Fig. 2(e) and
period-four RPP is shown in Fig. 2(f). These domains of
period doubling are indicated, respectively, by(e) and (f) in
Fig. 3. As we further increaseh, the regularity of the pulse
packages is destroyed as depicted in Fig. 2(g) and indicated
by label(g) in Fig. 3. These irregular pulse packages coexist
with a time-periodic solution that originates from a newly
born ECM [Fig. 2(h) and label(h) in Fig. 3]. The region of
bistability is better observed when comparing the bifurcation
diagrams in Fig. 3(a) and 3(b). As can be seen from Fig. 3(b)
decreasing the feedback rateh from periodic solution(h)
brings the system to this newly born ECM steady state
through the Hopf bifurcation and the system stays in the
MGM until the mode disappears and the system enters the
chaotic regime.

FIG. 2. Time traces of intensityP variations in time[panels(1)]
measured in units of the delayu and phase portraits[panels(2)] in
the ffssd−fss−ud ,Ng space showing the development and disap-
pearing of RPP. Modes are represented by triangles and antimodes
by circles. In(a) h=0.061,(b) and(c) 0.064,(d) 0.0688,(e) 0.0707,
(f) 0.0715, (g) and (h) 0.073, respectively. The parameters areJ
=1.15,u=70, a=5, andvu=−arctana.

FIG. 3. Extrema of the laser intensity as a function of the feed-
back rateh. The figure shows a representation of different dynami-
cal regimes in the form of the bifurcation diagram. The feedback
rate was first(a) increased and then(b) decreased. Arrows indicate
the dynamical situations from Fig. 2. In(a) h=0.061,(b) and (c)
0.064,(d) 0.0688,(e) 0.0707,(f) 0.0715,(g) and(h) 0.073, respec-
tively. The parameters areJ=1.15, u=70, a=5, and vu=
−arctana.
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III. MAPPING OF THE RPP DYNAMICS

Figure 4 shows bifurcation diagrams of the laser intensity
P as a function ofh and for three different values ofu
namelyu=50, 70, and 90. In each caseh was ramped from
0 to 0.3 in very fine increments. At each step the extrema of
the output power were recorded after waiting for the tran-
sient to die out(about few tens of RPP cycles). If we com-
pare the bifurcation diagrams for different values ofu we see
that for small delayssu=50d the laser system undergoes the
same cascade of bifurcations as presented in Figs. 2 and 3.
When increasing the feedback rateh the laser system bifur-
cates from a steady state solution to a periodic state, then
becomes quasiperiodic and possibly chaotic. The chaotic dy-
namics corresponds to irregular sequences of pulses which
may become regular(RPP) for some values ofh. As we
increaseh further, the system settles to a newly born ECM
steady state and a cascade of bifurcations similar to the one
presented in the preceeding section occurs. Here, the win-
dows of RPP are initially narrow and broaden with increas-
ing the feedback strengthh [Fig. 4(a)]. For intermediate
level of the delayu=70 [Fig. 4(b)] the windows of RPP
expand and eventually merge ash increases giving a broad,
continuous window of RPP. For larger delayssu=90d [Fig.
4(c)] we observe that RPP is destabilized at small feedback
ratesh giving rise to chaotic states and, moreover, the broad

window of RPP shrinks. The chaotic dynamics resembles
very much the one of LFF when plotted in the phase space
ffssd−fss−ud ,Ng. This LFF type of dynamics starts to
dominate and eventually for even larger delays it overtakes
RPP.

We complement our observations by plotting a detailed
map of RPP dynamics in the plane(u ,h). In order to plot this
map we follow a similar procedure to the one used to plot
bifurcation diagrams but this time we sweep the two bifur-
cation parameters, namely the feedback rateh and the delay
time u.

We develop an automatic way to detect the presence of
regular pulse packages. For each pair ofh, u, we integrate
the LK equations and analyze the time trace of laser inten-
sity. As time goes on, we record the successive extrema and
also keep in memory the largest maximum in the intensity
time trace. We check if this maximum repeats at regularly
spaced time intervals. In this case the dynamics is time pe-
riodic and a clock is activated to measure the period. Next,
we check if the time-periodic dynamics corresponds to the
RPP regime. To this end, we compute the number of intensity
oscillations in the duration of one period, i.e., the number of
successively different intensity maxima within one period.
We know that if the dynamics corresponds to RPP then the
laser emits pulses at each external-cavity round-trip time,
such that the maximum number of pulses corresponds to the
period of the pulse package divided by the delay time. We
compare this approximate number of pulses with the one
detected from the analysis of the simulated time trace and
then with some tolerance we conclude whether the dynamics
is RPP or just another type of time-periodic behavior. We
also have access to the value of the RPP periodsTRPPd.

As an example we plot the periodsTRPPd and the fre-
quencysnRPP=1/TRPPd of RPP as a function of the injection
currentJ in Fig. 5. We observe that with increasing the cur-
rent the frequency(period) of RPP continuously increases
(decreases). Interestingly, the dependency of the frequency is
linear for large levels of injection currents as in Ref.[26] but
for low levels of current the curve is significantly bent. We
remind the reader that changing the current modifies the ratio
of the two characteristic time scales in the system; i.e., the
delay u and the relaxation oscillation periodTRO. In other
words, increasing the injection current can bring the system
from short to long external cavity regime. Therefore, the lin-
ear scaling ofnRPPsJd for large pump current values seems to

FIG. 4. Bifurcation diagrams of the laser intensityP as a func-
tion of the feedback rateh for different delayu. In (a) u=50,(b) 70,
and (c) 90. The parameters areJ=1.155, u=70, a=5, andvu=
−arctana.

FIG. 5. Period(a) and frequency(b) of envelope of RPP as a
function of injection current. IndicessRPP1d, sRPP2d, sRPP3d and
sRPP4d indicate the order of the period of RPP. The parameters are
h=0.2, u=85, a=5, andvu=−arctana.
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be connected to the fact that we approach the long external
cavity regime. To support this statement, it is worth mention-
ing that, interestingly, the scaling of the inverse mean time
between power dropouts in the chaotic long EC LFF regime
was also shown to be linear[30].

Our procedure also allows us to distinguish between
higher order periods, i.e., when the pulse envelope repeats
with a period larger than the duration of a single pulse pack-
age. These higher-order RPP regimes are identified in Fig. 5
by the labels RPP1 for the period-one RPP, RPP2 for the
period-two RPP, RPP3 for the period-three RPP and finally
RPP4 for the period-four RPP. It should be pointed out that
the period of RPP2 is not exactly twice the period of RPP1
since the pulse package envelope and hence the trajectory in
the phase plane differs slightly from pulse package to pulse
package.

In the two-dimensional map of Fig. 6 we only plot the
point representing the detected RPP dynamics, including
RPP of higher order periods(up to period of 10). In this way
we obtain quite representative picture of the regions of the
RPP dynamics. From Fig. 6 we see that the regions of RPP
are very well defined in thesh ,ud space. Our map reveals
that RPP dynamics appears for intermediate levels of feed-
back strengthh and at delaysu smaller than the RO period
TRO (for our parametersTRO.170). This is in agreement
with previous observations by Heilet al. [15,26] where they
suggest that RPP disappears when the delay approaches the
RO period and then the transition to LFF takes place. More-
over, in Fig. 6 we find that the largest region of RPP is for
delays around half of the RO period.

For smaller delays small windows of RPP are very well
identified in Fig. 6[as also depicted in Fig. 4(a)]. Similar
restricted regions in thesh ,ud plane in short external cavities
were found in Ref.[31] for the case of chaotic behavior. We
mention that when changing the phase of the back reflected
light the structure of this part of the map may be significantly
altered. When the phase changes by ±p the windows of RPP
shift in such a way that they fit the space in the map where

RPP was not previously present. We illustrate this phase sen-
sitivity in the inset of Fig. 6 where we plot the regions of
RPP for two different phase conditions that differ byp. We
observe that changing the phase shifts the regions of RPP up
and down such that RPP may be found in that interval of the
su ,hd space only if the proper phase condition is chosen.
This agrees with the previous observations by Heil in Ref.
[26] where they show that RPP is sensitive to optical phase.
However, from the map we see that it is only true for small
delays. For delay times larger than half the RO period the
occurrence of RPP dynamics becomes phase insensitive. It is
worth mentioning that the phase sensitivity in short EC op-
tical feedback regime has been also observed both theoreti-
cally and experimentally in Ref.[25].

When the delayu approaches half of the RO period, the
windows of RPP broaden and merge as shown in Fig. 4(b).
In such a way, the largest region of RPP occurs for delays
around half of the RO period. When the delayu approaches
the RO period as shown in Fig. 4(c) the RPP loses synchro-
nization and the dynamics becomes chaotic, similar to the
one observed in the LFF regime; i.e., when averaged on a
longer time scale, the laser intensity sporadically decreases
and gradually returns to the original level. For larger delays
the chaotic regime starts to dominate and therefore the win-
dows of RPP shrink and finally disappear.

It is worth mentioning that the period of RPP depends not
only on the injection current but also on the feedback param-
etersh andu. For clarity reasons we will only focus on the
lowest order RPP periodsTRPP1d in the following. In Fig. 7
we show the dependence ofTRPP1on the feedback strengthh

FIG. 6. Map of the RPP dynamics in thesu ,hd space. The pa-
rameters areJ=1.155,a=5, andvu=−arctana+p. The inset illus-
trates the phase dependency of RPP: in black the map is plotted for
vu=−arctana and in grayvu=−arctana+p.

FIG. 7. Period of RPP in units oftp versus feedback strengthh.
In (a) u=50 and in(b) u=70. Vertical lines represent the value ofh
for which creation on new pair of ECMs takes place. The param-
eters areJ=1.155,a=5 andvu=−arctana.

BIFURCATION STUDY OF REGULAR PULSE PACKAGES… PHYSICAL REVIEW E 70, 036211(2004)

036211-5



for two values of the delayu namely u=50 andu=70. In
both cases we observe an increase of the period ofTRPP1with
h which is associated with an increase of the number of
ECMs and expansion of the ellipse. When increasing the
feedback strengthh the system visits more ECMs during one
RPP cycle increasing the period. As already shown in Fig. 6,
the regions of RPP are not continuous for small delays. At
the moment RPP appears its period is very large, then it
decreases and before the destabilization of RPP it increases
again (forming a parabolalike curve). The straight vertical
lines in Fig. 7 correspond to the exact values of the feedback
h for which a creation of a new pair of ECMs takes place.
We see that for the small feedback rate[Fig. 7(a)] the region
of RPP starts before new ECMs are born and it proceeds
even further away from that point. This indicates that RPP
occurs due to destabilization of a previous MGM. Therefore,
there is a region of bistability between RPP and the stable
state. However, for largeh the windows of RPP lie between
two saddle-node bifurcations creating new ECMs.

It is interesting to investigate the mechanism that leads to
this parabolic shape ofTRPP1in the vicinity of the creation of
one new pair of ECMs; see Fig. 7(a). Here a creation of
ECMs takes place aroundu* =0.216. In Fig. 8(a) we plot the
zoom of Fig. 7(a) in the vicinity of u* together with the phase
trajectory in theffssd−fss−ud ,Ng space for different values
of the feedback strengthh before and after the creation of
this mode.

Figure 8(b) depicts the moment just before the creation of
new ECM. In this case the phase space trajectory is mostly
confined to the vicinity of MGM. The system visits the
MGM many times before it is repelled across the unstable
branch of the ellipse passing by the corresponding antimode.
With increasing the feedback rate the period of RPP de-
creases. Just after the creation of a new pair of ECMs, in Fig.
8(c) we observe a dramatic change in the system trajectory
around the ECMs. The system does not jump to the newly
born MGM but most of the time it stays in the vicinity of the

previous MGM. Then, surprisingly, from this mode the sys-
tem follows the stable manifold of the new antimode. The
system tries to hit this antimode making several loops close
to it but before reaching it is repelled to the antimode of the
previous MGM. As the feedback strengthh increases, the
system makes more and more turns around the new antimode
and circles less and less frequently around the previous mode
and the previous antimode; see Fig. 8(d). Finally, in Fig. 8(e)
we come to the situation in which only one antimode is
visited and the previous antimode does not play a role in the
dynamics of RPP. Further increase of the feedback confines
the trajectory closer and closer to the new MGM and in-
creases the period of RPP. The stars in Figs. 8(b)–8(e) denote
the moment in the phase trajectory for which the power
drops to zero before slipping to one particulary chosen ECM
— the MGM in Fig. 8(b). It takes for the system approxi-
mately the same time to travel from the maximum of the first
peak in RPP to the moment indicated by stars for all cases
from Fig. 8. Therefore, the change of the period of RPP is
associated with the remaining part of the phase trajectory
during one RPP and particularly with the complexity of the
dynamics around the MGM and the nearby antimodes.

This behavior, in which the period of RPP exhibits a para-
bolic dependency on the feedback rate each time a new pair
of ECMs is created, is not observed for larger values of the
delay u. As shown in Fig. 7(b), for u=70 TRPP increases
continuously when increasing the feedback rateh. This indi-
cates that the period of RPP is sensitive to the delay or, in
another words, the phase space configuration strongly modi-
fies the dynamics of RPP in particular when there are only a
few ECMs present in the system.

Since the structure of the external cavity plays a key role
in the RPP dynamics we continue our investigations by
checking the dependence of the periodTRPP of the envelope
of RPP on the external cavity length. In Fig. 9 we plot
TRPP1sud for different values of the current, namelyJ=0.8,
1.115, and 1.8. We observe that the injection current has
much stronger impact on the period of RPP than the delay,

FIG. 8. An enlargement of Fig. 7(a) in the vicinity of the cre-
ation of ECMs together with a phase trajectory in theffssd−fss
−ud ,Ng space for different values of the feedback strengthh. In (b)
h=0.2154,(c) 0.2168(d) 0.2182, and(e) 0.2213. The parameters
areJ=1.155,u=50, a=5, andvu=−arctana.

FIG. 9. Period of RPP in units oftp versus delayu in units oftp

for different values of the injection current. Vertical lines represent
the value ofu for which creation on new pair of ECMs takes place.
The parameters areh=0.3, a=5, andvu=−arctana.
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i.e., period changes in much broader range when changing
the injection current. At large injection currents the RPP pe-
riod is significantly smaller than the one at small currents.
Moreover, we see that for each value of the injection current
the dependency ofTRPP1 on the delay timeu possesses a
characteristic minimum. With increasing the current this
minimum moves towards lower values of the delay. Interest-
ingly, for each injection current the minimum of the RPP
period occurs for the delays close to half of the RO period.
Similarly to Fig. 7 the RPP period changes continuously for
large delays whereas it is periodically interrupted for small
delays in the vicinity of the creation of new ECMs, as visu-
alized by the vertical lines. For largeru new ECMs do not
influence the dynamics of the RPP.

IV. BIFURCATION SIGNATURE OF RPP

We continue our numerical investigations of the LK equa-
tions by a systematic study of the global picture of bifurca-
tions underlying the route to RPP dynamics. For that purpose
we have used the continuation package DDE-BIFTOOL for
delay-differential equations[32]. It allows to compute the
stable and unstable branches of steady and time-periodic so-
lutions. As already pointed out in recent works
[20–24,26,33], the unstable branches of time-periodic solu-
tions play an important role in our understanding of the glo-
bal picture of bifurcations of the laser dynamics.

The bifurcation diagram obtained with this continuation
method is plotted in Fig. 10. Only the first branches of steady
states are shown. They appear in pairs as we increase the
feedback rateh. Stable(unstable) parts of the branches are
shown in solid(dashed) lines. The ECMs exhibit supercriti-
cal Hopf bifurcations. From these supercritical Hopf bifurca-
tions emerge branches of time-periodic solutions. These

branches of time-periodic solutions destabilize with a sec-
ondary bifurcation that can be either a period doubling bifur-
cation (as it is the case for the first plotted branch of time-
periodic solution) or a torus bifurcation(as it is the case for
the two other branches of time-periodic solutions plotted in
Fig. 10). The unstable parts of the branches of time-periodic
solutions always connect to a subcritical Hopf bifurcation
located on the antimode branch of the next ECM. We say
that the modes connect to the antimodes by forming Hopf
bifurcation bridges. The two Hopf bifurcations which form
each bridge are shown in bold. These bridges between ECMs
through time-periodic solutions are very similar to those re-
ported in Refs.[20–22,24,33]. However, interestingly, these
branches of time-periodic solutions initiate a turning point
and exhibit a more complex shape as we increase the feed-
back rateh. The first bridge between ECMs shown in Fig. 10
indeed exhibits a shape very different from that of the other,
subsequent bridges. Moreover, the third plotted bridge be-
tween ECMs still connects a mode to an antimode but, in
contrast to the two first bridges, it does not connect to the
first Hopf bifurcation appearing on the antimode branch of
the next ECM ash increases. Instead, it connects to the
second Hopf bifurcation point on the antimode branch of the
next ECM. As shown in Fig. 10, an unstable bridge of time-
periodic solutions connects the first Hopf bifurcation on the
antimode branch to another “unstable Hopf” bifurcation[21]
located on the mode branch of a previous ECM solution. In
the conventional bridge between a mode and an antimode
[33] this first Hopf on the antimode branch would connect to
a stable Hopf bifurcation on a mode branch, as shown in the
two first bridges in Fig. 10. We therefore notice the appear-
ance of a bifurcation bridge of a different topology as we
increase the feedback rateh which coincides with the ap-
pearance of RPP dynamics.

The consequences of the topological change in the bifur-
cation diagram are shown in Fig. 11, which plots the bifur-
cation diagram of the laser intensityP for the same param-
eters than in Fig. 10 but obtained from a direct numerical
integration of the LK equations. Indeed the complex dynam-
ics emerging from the secondary bifurcations on the
branches of time-periodic solutions cannot be followed with
the continuation package DDE-BIFTOOL. Ash increases
from zero, the first ECM destabilizes with a Hopf bifurcation
(symbolL). From this Hopf bifurcation emerges a branch of
a time-periodic solution which destabilizes for larger values
of h to period doubling and possibly chaotic oscillations.
This first branch of time-periodic solutions for small values
of h was not plotted in Fig. 10 and does not play a role in the
emergence of RPP dynamics. If we further increaseh, new
ECMs are created and the laser exhibits a cascade of Hopf
bifurcations from which emerge the branches of time-
periodic solutions that we have plotted in Fig. 10 and that
were identified as Hopf bifurcation bridges between a mode
and the antimode of a next ECM solution. The bifurcation
diagram of Fig. 11 shows that, in agreement with the stability
analysis of the time-periodic solutions in Fig. 10, the three
first bridges between ECMs exhibit either a period doubling
bifurcation(the case of the first bridge) or a torus bifurcation
(the case of the two next bridges) to a more complicated and
irregular time dependency of the laser intensity. However the

FIG. 10. Stability of ECMs and branches of time-periodic solu-
tions in the route to RPP dynamics. Stable(unstable) branches of
steady and time-periodic solutions are indicated in solid(dashed)
lines. Diamonds indicate Hopf bifurcations, triangles are used for
period doubling bifurcation and torus bifurcations are indicated by
stars. The parameters areJ=1.155, u=70, a=4, and vu=
−arctana.
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third bridge is very different in that we find a window of RPP
dynamics in between two more irregular or chaotic intensity
dynamics. This small region of RPP dynamics is indicated by
the arrow in Fig. 11. The emergence of RPP occurs for val-
ues ofh that correspond to a topological change in the bi-
furcation diagram.

The comparison between Fig. 10 and Fig. 11 therefore
suggests that one of the bifurcation signature of RPP appears
to be a Hopf bifurcation bridge between a mode and an an-
timode but in which the bridge connects to the second un-
stable Hopf bifurcation that appears on the antimode branch
of the next ECM, in contrast to the previously reported types
of mode-antimode bridges[20–24,33]. We have checked that
this bifurcation signature of the RPP dynamics is present for
several other sets of laser parameters.

V. CONCLUSIONS

We have studied the influence of delayed optical feedback
from a short external cavity on the emission dynamics of
semiconductor lasers using the Lang and Kobayashi rate
equation model. We have presented the bifurcation scenario
leading to RPP and we have given examples of bistability
between RPP and time-periodic or steady state solutions. We
have identified regions in feedback parameters space for
which RPP occurs. We showed that by increasing the delay
time the windows of RPP broaden, merge and finally shrink
when the EC round-trip time approaches the RO period. In-
terestingly, the largest region of RPP occurs for delays
around half of the RO period of the solitary laser. We also
analyzed in detail the dependency of the period of the enve-
lope of the pulse packages on the laser and feedback param-
eters. We found that the period of RPP exhibits a minimum
for a delay time close to half of the RO period. The period of
RPP increases in function of the feedback rate but for smaller
delays the RPP period exhibits oscillations which we identify
as being due to the destabilization of the RPP in the vicinity
of newly born external cavity modes. Finally, we used recent
continuation techniques for delay-differential equations to
identify one of the bifurcation signature of RPP: the occur-
rence of RPP is accompanied by a dramatic change in the
topology of the bifurcation diagram resulting in the creation
of a new type of Hopf bifurcation bridge between a stable
ECM and an unstable saddle-type ECM.
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