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Bifurcation study of regular pulse packages in laser diodes subject to optical feedback
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We study the influence of delayed optical feedback from a short external cavity on the emission dynamics of
semiconductor lasers using the Lang and Kobayashi rate equation model. A combination of numerical integra-
tion and continuation techniques allows us to bring new light into the bifurcation scenario leading to the
regular pulse packageg®PP regime. We give examples of bistability between RPP and time-periodic or
steady state solutions. Our bifurcation study of RPP regime is complemented by an analysis of the dependency
of the RPP period on the laser and feedback parameters. We qualitatively study this new dynamical regime by
plotting a two-dimensional map in the feedback parameters space. The occurrence of RPP is furthermore
associated with a topological change in the bifurcation diagram and accompanied by the creation of a new type
of bifurcation bridge between a mode and an antimode.
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I. INTRODUCTION gular frequency of the solitary laser and the feedback rate,

When inserted in any optical system, semiconductor Ia_respectlvely.J is the excess pump current proportional to

sers(SLs are neviably subject 0 optcal feedbag@P), ottt SO TEREEE S O e
i.e., external reflection of the light which re-enters the laser Y 4

cavity after a certain delay time. Such time-delayed ORE/Nal cavity modegECMs). In the[ ¢(s) - #(s— 6),N] plane,

might significantly affect the stable laser operation and in—EC'vIS lie on an ellipse given by the equatifie]
duce complex dynamics, such as self-pulsatifjs multi- B N 2 5 2
stability [2] and chao$3,4]. For most applications in which (¢(8) = p(s— 6) — aN)”+ (ON)"= (76)". 3

a stable laser operation is indispensable, i.e., in data tranﬁ:he right-hand side of Eq3), i.e., the product of the feed-

mission, the instabilities induced by OF must be avoided b . ;
means of expensive optical isolators. Alternatively, high sen)ij)ack strengthy and the delay, determines the characteris-

sitivity of SLs to OF can also be used in a constructive Way:tICS of this ellipse and the number of existing ECMs. It is

optical feedback can narrow the linewidth of the emittedwe.II known that as we increa_se this_product, ECMs appear in
light [5,6] and may also be used for chaotic encryptiai pairs through saddle-node bifurcation and one of the newly
optical ’data readout and frequency tunjiagd] created ECMs is potentially stabl@nd therefore called
Most of the theoretical analysis of the influence of de-mOde aT]d the lother one 15 T\Iways gnsrt]alﬁltealled anti- h of
layed OF from an external cavifeC) on the emission dy- mode._T e stable mode_s are ocated_ In the lower branch o
namics of SL is based on the Lang-Kobaya@{) approach the ellipse, whereas antimodes are situated in the upper one.
[10]. It accounts for one longitudinal laser mode and one Extensive experimental and theoretical investigations

roundtrip in the EC. In dimensionless form the LK equationsover th.e Ilast three decades show that ql_JaI|tat|veth ?n‘ferentk
read[11] dynamical regimes are observed depending on the feedbac

strength# [13] and/or the length of the E{14]. Usually, we
—(Q) = i Sl =T say that the length of the EC is longhory if the corre-
B(9)= (1 +ia)NE(S) + ne*E(s - 0), @ sponding EC round trip time is larger (smallep than the
: relaxation oscillation periodgo=mV2T/J [14,15. In the
TN=J-N-(1+2N)E(s)]?, (2)  case of long EC and moderate feedback rates, the stable
— Braad(s . emission of the SL is easily destabilized and chaotic regimes
whereE(s)- VP(s)e", stands for the e_Iectnc field a_mdd; arise. Typically observed chaotic dynamics in the long cavity
being the power and the phase of the I|_ght wave,l‘_&mslth_e regime are the so-called low-frequency fluctuatigh&F)
excess carrer number. In the;e equaﬂons, the dmensmnle&e’m, which manifest as sporadic and sudden dropouts of
time s is in units of photon lifetimery(s=t/ ;). The param- the light intensity followed by successive, much slower step-
etersT and ¢ are defined a3 =7,/ 7, and 0=/ 7, wherer, i retumn to maximal power. The regime of LFF anticipates
andr are the carrier lifetime and the external round-trip time

ely— dpe he di ionl 'another intriguing regime that is the coherence collg@<®
respectivelyw = wor, and 7= y7, are the dimensioniess an- raqime[18]. It is usually found by either increasing the pump

current or increasing the EC delay time once the LFF regime
was found. CC can be recognized by a significant broadening

*Electronic address: atabaka@tona.vub.ac.be of the optical linewidth up to a few tens of GHz.
TAlso at Institute of Solid State Physics, 72 Tzarigradsko Chaus- In contrast to these long EC feedback instabilities, short
see Blvd., 1784 Sofia, Bulgaria. EC dynamics is expected to be less complicated because of
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@ ¢ ics that are involved. Our analysis allows us to unveil differ-
ent cases of bistability between RPP and steady-state or time-
3 periodic dynamics and also shows that the slow envelope of
RPP may experience several period-doubling bifurcations.
B U\M - As we increase the feedback rate, the windows of RPP pro-

n
1

5, gressively merge to a continuous region of RPP, which we

pm ym yon v analyze in more details through a two-dimensional map in
Time [6] the plane of the feedback parameters in Sec. Ill. We reveal
that the largest region of RPP occurs “in the middle of the
° short EC regime,” i.e., for values of the EC delay time close
e T, to half of the RO period. Hereafter, we also analyze how the
_ interplay between the system trajectory in the phase space
and the creation of new ECMs governs the dependency of
] the period of the pulse package envelope on the laser and
feedback parameters. Finally, a computation of the unstable
40 branches of steady-state and time-periodic solutions in Sec.
IV allows us to relate the occurrence of RPP dynamics with
FIG. 1. Numerically computed trajectory in the RPP dynamicsthe destruction of a Hopf bifurcation bridge between a mode
using the LK model. We have plotted {g) the time trace of inten- and an antimode and the creation of a new mode-antimode
sity P variations in time measured in units of the dekagind in(b) bridge with a different topology. Our results are summarized
phase portrait in th¢ ¢(s)— ¢(s—6),N] space. Modes are repre- in Sec. V.
sented by triangles and antimodes by circles. Numbers indicate dis-
tinct moment in time during RPP. The parameters &rd.155, »
=0.135,6=70, «=5, andwf=-arctana.

Intensity P farb. units]

Inversion N

[} 20
9(s)—-¢(s-6) [rad]

II. BIFURCATION TRANSITION TO RPP

the reduced number of ECMs. However, lasers with shor Thg bifu_rcation transition leading to RPP dynamics is ana-
external cavity have recently been found to exhibit interest.Y2€d in Figs. 2 and 3. We take the feedback ratas a
ing dynamics. For example, it has been shown theoreticall _|furcat|_0n parameter yvhlle the other parameters remain
in Refs.[14,19 that laser diodes with short EC can generatelix€d. Figure 2 shows time traces of the intenditypanels
microwave oscillations of the emitted power due to a beating1)] and the corresponding phase portraits of the excess car-
between a stable ECM and an antimode. Also stable oscillaier numberN as a function of phase differencg(s) - ¢(s
tions corresponding to a beating between two stable ECMs 6) [panels(2)]. As we already mentioned in Sec. |, ECMs
[20-23, high frequency pulsating solutions emerging from aappear in pairs of modes and antimodes as we incrgasel
subcritical Hopf bifurcation[23,24 and chaotic dynamics they lie on an ellipse in the phase space. The modes are
[25] have been reported in SL with short EC feedback. represented by triangles and the antimodes by circles. In Fig.
In this paper we analyze another dynamical behavior o8 we plot the bifurcation diagrams of the laser intensity, i.e.,
laser diodes subject to short EC optical feedback, which ishe successive extrema of the laser intensity as we vary the
called regular pulse packages or RPP. We build upon unpredeedback raten upwards[Fig. 3@] and downwardgFig.
edented insight into the dynamics in short EC that was pre3(b)], respectively. The labels in Fig. 3 refer to the dynamics
sented in Refs[15,26. We remind the reader of the RPP analyzed in Fig. 2.
dynamics in Fig. 1. It corresponds to the emission of high We start our bifurcation analysis from the time periodic
intensity pulses separated by the delay tithand that are solution shown in Fig. @) and which has emerged from the
modulated by a slower, time-periodic envelope; see R@. 1 destabilization of the MGM through a Hopf bifurcation; see
During one RPP cycle the system follows the same patklso Fig. 3. When increasing the feedback ratéhe time-
visiting different ECMs in the direction to the maximum gain periodic solution destabilizes to quasiperiodic dynanig.
ECM (MGM); see Fig. 1b). Then the laser system is re- 2(b)], i.e., the system trajectory lies on a torus which is re-
pelled across the unstable branch of the ECM ellipse inducstricted to the nearest area around the destabilized MGM. In
ing the phase shift to the direction of ECM with larger  Fig. 3 this quasiperiodic attractdlabel b is hidden by the
Heil et al. in Ref. [15] briefly compared the RPP dynamics irregular pulse package dynamigabel o.
with the dynamics observed in the LFF regime. In both We find that for the same) the quasiperiodic solution
cases, low frequency phenomena are present connected wiifig. 2(b)] may coexist with a qualitatively different dynam-
a global trajectory along several attractor ruins and producics in which the laser emits packages of pul§€. 2(c)].
ing pulses when visiting each of them. What makes RPP he laser intensity exhibits pulsations at the EC frequency,
distinct from LFF is the sensitivity to phase of the back-which are modulated by a slower envelope. In the time of the
reflected light[26]. The transition from RPP to LFF occurs pulse package, ECMs are visited in direction to the MGM. In
when the delay becomes larger than the RO period. the vicinity of the MGM, the phase trajectory spirals many
In this paper we throw more light into the bifurcation times around the compound cavity modes while being
origin and the main dynamical properties of the RPP regimeshifted towards antimodes after each spiralling motion. The
In Sec. Il we numerically investigate the bifurcation transi- system trajectory then collides with an antimode and is sud-
tion to RPP dynamics, i.e., the qualitatively different dynam-denly repelled towards the center of the ellijsey. 2(c2)].
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back raten. The figure shows a representation of different dynami-
cal regimes in the form of the bifurcation diagram. The feedback
rate was firs(a) increased and thef) decreased. Arrows indicate
the dynamical situations from Fig. 2. @ #=0.061,(b) and (c)
0.064,(d) 0.0688,(e) 0.0707,(f) 0.0715,(g) and(h) 0.073, respec-
tively. The parameters areJ=1.15, #=70, «=5, and w6=
—arctana.

Since there is not a clear borderline between those two
short and long dynamical regimes there must be a continuous
transition from short to long external cavity regime. This
transition is accompanied with progressive change of the
shape of the pulse packages envelope followed by progres-
sive lack of periodicity[24,29. This transition roughly oc-
curs whend is close to the RO perioll5], which for our
parameters is close to 170. In FigicPthe pulse packages
are not yet regular. With further increase sthe quasiperi-
odic attractor disappears and RPP is observed; see (€ig. 2
500 510 520 23 18 -13 In the RPP regime the laser system always follows the same

Time [6] 9(s) - ¢(s - 6) [rad] trajectory in the phase space visiting only some ECMs. This
RPP regime corresponds to the lat@l in Fig. 3. Since the
maxima of the pulses are always at the same intensity level
the [(s) - ¢(s- 6),N] space showing the development and disalo_f.rom pulse package to puljse package, the occurrence _of con-
pearing of RPP. Modes are represented by triangles and antimodgguous_reQ'c_)nS of RPP yields a set of parallel lines in the
by circles. In(a) 7=0.061,(b) and(c) 0.064,(d) 0.0688,(e) 0.0707,  bifurcation diagram.

(f) 0.0715,(g) and (h) 0.073, respectively. The parameters dre With increasing the feedback strength RPP may undergo a
=1.15, =70, «=5, andwf=—-arctanc. period doubling bifurcation cascade. Period-two RPP, i.e.,

first RPP repeats every two cycles, is shown in Fig) 2nd

period-four RPP is shown in Fig.(3. These domains of
Quite similar type of dynamics has also been observed foperiod doubling are indicated, respectively, (@y and (f) in
the case of the long external cavity chaotic LFF reg|2ig. Fig. 3. As we further increase, the regularity of the pulse
This dynamics appears all of a sudden and has been assopackages is destroyed as depicted in Fig) 2nd indicated
ated with an interior crisi§28] of the laser system in which by label(g) in Fig. 3. These irregular pulse packages coexist
a sudden increase of the size of a chaotic attractor takesith a time-periodic solution that originates from a newly
place; segb) and (c) in Figs. 2 and 3. What makes RPP born ECM[Fig. 2(h) and label(h) in Fig. 3]. The region of
unique is that in RPP the collision always takes place in théistability is better observed when comparing the bifurcation
vicinity of the same compound cavity mode whereas in thediagrams in Fig. @) and 3b). As can be seen from Fig(13
LFF case the antimode which initiates the collision changeslecreasing the feedback raiefrom periodic solution(h)
from one LFF cycle to another one. The bifurcation diagrambrings the system to this newly born ECM steady state
in Fig. 3@ suggests also a presence of a boundary crisis ithrough the Hopf bifurcation and the system stays in the
the systenj28] which causes a sudden disappearance of RPRIGM until the mode disappears and the system enters the
dynamics asy is increased; se@) and(h) in Figs. 2 and 3.  chaotic regime.

FIG. 2. Time traces of intensitly variations in timegpanels(1)]
measured in units of the delayand phase portraifgpanels(2)] in

036211-3



TABAKA et al. PHYSICAL REVIEW E 70, 036211(2004)

A

8000 A - (a)

6000 \ T T
~.
4000

2000

— .,

Period of RPP [in units of "p]
]

I/".. . ' )
¢ ! ‘
NIV
’ . .
3233
s3R
Frequency [in units of 1/
n S

o
o

0 0.5 1 15 2 0 0.5 1 1.5 2
Current Current

FIG. 5. Period(a) and frequencyb) of envelope of RPP as a
function of injection current. IndiceRPPJ, (RPP3, (RPP3 and
(RPP4 indicate the order of the period of RPP. The parameters are
7=0.2, /=85, =5, andwf=-arctana.

window of RPP shrinks. The chaotic dynamics resembles
very much the one of LFF when plotted in the phase space
[H(s)—p(s—6),N]. This LFF type of dynamics starts to
dominate and eventually for even larger delays it overtakes
RPP.

We complement our observations by plotting a detailed
map of RPP dynamics in the plafe, »). In order to plot this
map we follow a similar procedure to the one used to plot
bifurcation diagrams but this time we sweep the two bifur-
cation parameters, namely the feedback raend the delay
time 6.

We develop an automatic way to detect the presence of
regular pulse packages. For each pairmpff, we integrate
the LK equations and analyze the time trace of laser inten-

FIG. 4. Bifurcation diagrams of the laser intensRyas a func-  sity. As time goes on, we record the successive extrema and
tion of the feedback ratg for different delay6. In (a) 6=50,(b) 70,  also keep in memory the largest maximum in the intensity

Power Extrema [arb. units]

and (c) 90. The parameters ar=1.155, 0=70, =5, andwbf=  time trace. We check if this maximum repeats at regularly
-arctana. spaced time intervals. In this case the dynamics is time pe-
riodic and a clock is activated to measure the period. Next,

lll. MAPPING OF THE RPP DYNAMICS we check if the time-periodic dynamics corresponds to the

RPP regime. To this end, we compute the number of intensity

Figure 4 shows bifurcation diagrams of the laser intensityoscillations in the duration of one period, i.e., the number of
P as a function ofy and for three different values o  successively different intensity maxima within one period.
namely #=50, 70, and 90. In each cagsewas ramped from We know that if the dynamics corresponds to RPP then the
0 to 0.3 in very fine increments. At each step the extrema ofaser emits pulses at each external-cavity round-trip time,
the output power were recorded after waiting for the tran-such that the maximum number of pulses corresponds to the
sient to die ouiabout few tens of RPP cycledf we com-  period of the pulse package divided by the delay time. We
pare the bifurcation diagrams for different valuesdofle see  compare this approximate number of pulses with the one
that for small delay$6=>50) the laser system undergoes the detected from the analysis of the simulated time trace and
same cascade of bifurcations as presented in Figs. 2 and then with some tolerance we conclude whether the dynamics
When increasing the feedback ragehe laser system bifur- is RPP or just another type of time-periodic behavior. We
cates from a steady state solution to a periodic state, themlso have access to the value of the RPP pefegp.
becomes quasiperiodic and possibly chaotic. The chaotic dy- As an example we plot the period@gpp and the fre-
namics corresponds to irregular sequences of pulses whidjuency(vgrp=1/Tgrpp Of RPP as a function of the injection
may become regulafRPP for some values ofy. As we  currentJ in Fig. 5. We observe that with increasing the cur-
increasey further, the system settles to a newly born ECMrent the frequencyperiod of RPP continuously increases
steady state and a cascade of bifurcations similar to the oneecreases Interestingly, the dependency of the frequency is
presented in the preceeding section occurs. Here, the wininear for large levels of injection currents as in Rgf6] but
dows of RPP are initially narrow and broaden with increas-for low levels of current the curve is significantly bent. We
ing the feedback strengthy [Fig. 4@]. For intermediate remind the reader that changing the current modifies the ratio
level of the delay§=70 [Fig. 4(b)] the windows of RPP of the two characteristic time scales in the system; i.e., the
expand and eventually merge @sncreases giving a broad, delay ¢ and the relaxation oscillation peridbko. In other
continuous window of RPP. For larger delay=90) [Fig.  words, increasing the injection current can bring the system
4(c)] we observe that RPP is destabilized at small feedbackom short to long external cavity regime. Therefore, the lin-
ratesn giving rise to chaotic states and, moreover, the broagar scaling ofrgp(J) for large pump current values seems to
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FIG. 6. Map of the RPP dynamics in tlie, ) space. The pa- .g 2000 ’,-f" .
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trates the phase dependency of RPP: in black the map is plotted fog: 10001 ’,/" |
wh=-arctana and in graywf=-arctana+ . Rd 4
be connected to the fact that we approach the long externe 0 . .
cavity regime. To support this statement, it is worth mention- 0 0.1 02 0.3 0.4
ing that, interestingly, the scaling of the inverse mean time Feedback n

between power dropouts in the chaotic long EC LFF regime
was also shown to be line§B0].

Our procedure also allows us to distinguish betwee
higher order periods, i.e., when the pulse envelope repea
with a period larger than the duration of a single pulse pack-
age. These higher-order RPP regimes are identified in Fig. RPP was not previously present. We illustrate this phase sen-
by the labels RPP1 for the period-one RPP, RPP2 for theitivity in the inset of Fig. 6 where we plot the regions of
period-two RPP, RPP3 for the period-three RPP and finalllRPP for two different phase conditions that differ by We
RPP4 for the period-four RPP. It should be pointed out thabbserve that changing the phase shifts the regions of RPP up
the period of RPP2 is not exactly twice the period of RPPland down such that RPP may be found in that interval of the
since the pulse package envelope and hence the trajectory (A, ) space only if the proper phase condition is chosen.
the phase plane differs slightly from pulse package to puls&@his agrees with the previous observations by Heil in Ref.
package. [26] where they show that RPP is sensitive to optical phase.

In the two-dimensional map of Fig. 6 we only plot the However, from the map we see that it is only true for small
point representing the detected RPP dynamics, includindelays. For delay times larger than half the RO period the
RPP of higher order periodsip to period of 1. In thisway  occurrence of RPP dynamics becomes phase insensitive. It is
we obtain quite representative picture of the regions of thavorth mentioning that the phase sensitivity in short EC op-
RPP dynamics. From Fig. 6 we see that the regions of RPRcal feedback regime has been also observed both theoreti-
are very well defined in théz, 6) space. Our map reveals cally and experimentally in Ref25].
that RPP dynamics appears for intermediate levels of feed- When the delay approaches half of the RO period, the
back strengthy and at delay® smaller than the RO period windows of RPP broaden and merge as shown in Kil). 4
Tro (for our parameterdzo=170). This is in agreement In such a way, the largest region of RPP occurs for delays
with previous observations by Hesk al. [15,26 where they around half of the RO period. When the deléyapproaches
suggest that RPP disappears when the delay approaches the RO period as shown in Fig(e} the RPP loses synchro-
RO period and then the transition to LFF takes place. Morenization and the dynamics becomes chaotic, similar to the
over, in Fig. 6 we find that the largest region of RPP is forone observed in the LFF regime; i.e., when averaged on a
delays around half of the RO period. longer time scale, the laser intensity sporadically decreases

For smaller delays small windows of RPP are very welland gradually returns to the original level. For larger delays
identified in Fig. 6[as also depicted in Fig.(#]. Similar  the chaotic regime starts to dominate and therefore the win-
restricted regions in thep, 6) plane in short external cavities dows of RPP shrink and finally disappear.
were found in Ref[31] for the case of chaotic behavior. We It is worth mentioning that the period of RPP depends not
mention that when changing the phase of the back reflecteanly on the injection current but also on the feedback param-
light the structure of this part of the map may be significantlyeters» and 6. For clarity reasons we will only focus on the
altered. When the phase changes bythe windows of RPP  lowest order RPP perioflTgppy) in the following. In Fig. 7
shift in such a way that they fit the space in the map whereve show the dependence Bfpp;0n the feedback strengti

FIG. 7. Period of RPP in units af, versus feedback strengtf
In (a) 6=50 and in(b) #=70. Vertical lines represent the value »f
or which creation on new pair of ECMs takes place. The param-
Rers areJ=1.155,a=5 andwf=-arctana.
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ation of ECMs together with a phase trajectory in fhis)~¢(S  the value off for which creation on new pair of ECMs takes place.
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7=0.2154,(c) 0.2168(d) 0.2182, ande) 0.2213. The parameters

areJ=1.155,0=50, a=5, andwf=—arctana. . . .
“ © “ previous MGM. Then, surprisingly, from this mode the sys-

for two values of the delay namely #=50 and¢=70. In  tem follows the stable manifold of the new antimode. The
both cases we observe an increase of the peridg@f;with ~ system tries to hit this antimode making several loops close
7 which is associated with an increase of the number ofo it but before reaching it is repelled to the antimode of the
ECMs and expansion of the ellipse. When increasing therevious MGM. As the feedback strengthincreases, the
feedback strengthy the system visits more ECMs during one system makes more and more turns around the new antimode
RPP cycle increasing the period. As already shown in Fig. 6and circles less and less frequently around the previous mode
the regions of RPP are not continuous for small delays. Aand the previous antimode; see Figd)8 Finally, in Fig. §e)
the moment RPP appears its period is very large, then ive come to the situation in which only one antimode is
decreases and before the destabilization of RPP it increasgssited and the previous antimode does not play a role in the
again (forming a parabolalike curye The straight vertical dynamics of RPP. Further increase of the feedback confines
lines in Fig. 7 correspond to the exact values of the feedbacthe trajectory closer and closer to the new MGM and in-
n for which a creation of a new pair of ECMs takes place.creases the period of RPP. The stars in Figis)-&(e) denote
We see that for the small feedback rfffég. 7(a)] the region  the moment in the phase trajectory for which the power
of RPP starts before new ECMs are born and it proceeddrops to zero before slipping to one particulary chosen ECM
even further away from that point. This indicates that RPP— the MGM in Fig. 8b). It takes for the system approxi-
occurs due to destabilization of a previous MGM. Therefore mately the same time to travel from the maximum of the first
there is a region of bistability between RPP and the stabl@eak in RPP to the moment indicated by stars for all cases
state. However, for large the windows of RPP lie between from Fig. 8. Therefore, the change of the period of RPP is
two saddle-node bifurcations creating new ECMs. associated with the remaining part of the phase trajectory
It is interesting to investigate the mechanism that leads taluring one RPP and particularly with the complexity of the
this parabolic shape dfzpp;in the vicinity of the creation of dynamics around the MGM and the nearby antimodes.
one new pair of ECMs; see Fig(dj. Here a creation of This behavior, in which the period of RPP exhibits a para-
ECMs takes place arourdd =0.216. In Fig. 8a) we plot the  bolic dependency on the feedback rate each time a new pair
zoom of Fig. Ta) in the vicinity of §" together with the phase of ECMs is created, is not observed for larger values of the
trajectory in the ¢(s) - ¢(s— 0),N] space for different values delay 6. As shown in Fig. ®), for 6=70 Tgpp increases
of the feedback strengtly before and after the creation of continuously when increasing the feedback rat&his indi-
this mode. cates that the period of RPP is sensitive to the delay or, in
Figure §b) depicts the moment just before the creation ofanother words, the phase space configuration strongly modi-
new ECM. In this case the phase space trajectory is mostlffes the dynamics of RPP in particular when there are only a
confined to the vicinity of MGM. The system visits the few ECMs present in the system.
MGM many times before it is repelled across the unstable Since the structure of the external cavity plays a key role
branch of the ellipse passing by the corresponding antimodén the RPP dynamics we continue our investigations by
With increasing the feedback rate the period of RPP dechecking the dependence of the peribgy of the envelope
creases. Just after the creation of a new pair of ECMs, in Figof RPP on the external cavity length. In Fig. 9 we plot
8(c) we observe a dramatic change in the system trajectoryrpp{ #) for different values of the current, namely0.8,
around the ECMs. The system does not jump to the newly1.115, and 1.8. We observe that the injection current has
born MGM but most of the time it stays in the vicinity of the much stronger impact on the period of RPP than the delay,
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35 ' ' * ' ' branches of time-periodic solutions destabilize with a sec-
ondary bifurcation that can be either a period doubling bifur-
cation (as it is the case for the first plotted branch of time-
periodic solution or a torus bifurcatior(as it is the case for
the two other branches of time-periodic solutions plotted in
Fig. 10. The unstable parts of the branches of time-periodic
solutions always connect to a subcritical Hopf bifurcation
located on the antimode branch of the next ECM. We say
that the modes connect to the antimodes by forming Hopf
bifurcation bridges. The two Hopf bifurcations which form
each bridge are shown in bold. These bridges between ECMs
through time-periodic solutions are very similar to those re-
ported in Refs[20-22,24,3B However, interestingly, these
branches of time-periodic solutions initiate a turning point
and exhibit a more complex shape as we increase the feed-
. s ; s . ] back raten. The first bridge between ECMs shown in Fig. 10
0 0.02 0.04 00 0.08 0.1 012 indeed exhibits a shape very different from that of the other,
subsequent bridges. Moreover, the third plotted bridge be-
FIG. 10. Stability of ECMs and branches of time-periodic solu- tween ECMs still connects a mode to an antimode but, in
tions in the route to RPP dynamics. Stablmstablg branches of contrast to the two first bridges, it does not connect to the
steady and time-periodic solutions are indicated in salidsheg  first Hopf bifurcation appearing on the antimode branch of
lines. Diamonds indicate Hopf bifurcations, triangles are used fothe next ECM asz increases. Instead, it connects to the
period doubling bifurcation and torus bifurcations are indicated bysecond Hopf bifurcation point on the antimode branch of the
stars. The parameters aré=1.155, #=70, a=4, and wf=  next ECM. As shown in Fig. 10, an unstable bridge of time-
-arctana. periodic solutions connects the first Hopf bifurcation on the
antimode branch to another “unstable Hopf” bifurcatj@a]
i.e., period changes in much broader range when changinigcated on the mode branch of a previous ECM solution. In
the injection current. At large injection currents the RPP pethe conventional bridge between a mode and an antimode
riod is significantly smaller than the one at small currents[33] this first Hopf on the antimode branch would connect to
Moreover, we see that for each value of the injection curren@é stable Hopf bifurcation on a mode branch, as shown in the
the dependency ofzpp; ON the delay timed possesses a two first bridges in Fig. 10. We therefore notice the appear-
characteristic minimum. With increasing the current thisance of a bifurcation bridge of a different topology as we
minimum moves towards lower values of the delay. Interestincrease the feedback ratg which coincides with the ap-
ingly, for each injection current the minimum of the RPP pearance of RPP dynamics.
period occurs for the delays close to half of the RO period. The consequences of the topological change in the bifur-
Similarly to Fig. 7 the RPP period changes continuously forcation diagram are shown in Fig. 11, which plots the bifur-
large delays whereas it is periodically interrupted for smallcation diagram of the laser intensiB/ for the same param-
delays in the vicinity of the creation of new ECMs, as visu-eters than in Fig. 10 but obtained from a direct numerical
alized by the vertical lines. For larggrnew ECMs do not integration of the LK equations. Indeed the complex dynam-

Max. P

influence the dynamics of the RPP. ics emerging from the secondary bifurcations on the
branches of time-periodic solutions cannot be followed with
IV. BIFURCATION SIGNATURE OF RPP the continuation package DDE-BIFTOOL. Ag increases

from zero, the first ECM destabilizes with a Hopf bifurcation

We continue our numerical investigations of the LK equa-(symbol ¢ ). From this Hopf bifurcation emerges a branch of
tions by a systematic study of the global picture of bifurca-a time-periodic solution which destabilizes for larger values
tions underlying the route to RPP dynamics. For that purposef 7 to period doubling and possibly chaotic oscillations.
we have used the continuation package DDE-BIFTOOL forThis first branch of time-periodic solutions for small values
delay-differential equation§32]. It allows to compute the of 5 was not plotted in Fig. 10 and does not play a role in the
stable and unstable branches of steady and time-periodic semergence of RPP dynamics. If we further incregseew
lutions. As already pointed out in recent works ECMs are created and the laser exhibits a cascade of Hopf
[20—24,26,3B the unstable branches of time-periodic solu-bifurcations from which emerge the branches of time-
tions play an important role in our understanding of the glo-periodic solutions that we have plotted in Fig. 10 and that
bal picture of bifurcations of the laser dynamics. were identified as Hopf bifurcation bridges between a mode

The bifurcation diagram obtained with this continuation and the antimode of a next ECM solution. The bifurcation
method is plotted in Fig. 10. Only the first branches of steadydiagram of Fig. 11 shows that, in agreement with the stability
states are shown. They appear in pairs as we increase thealysis of the time-periodic solutions in Fig. 10, the three
feedback ratey. Stable(unstablg parts of the branches are first bridges between ECMs exhibit either a period doubling
shown in solid(dashedl lines. The ECMs exhibit supercriti- bifurcation(the case of the first bridy@r a torus bifurcation
cal Hopf bifurcations. From these supercritical Hopf bifurca- (the case of the two next bridge® a more complicated and
tions emerge branches of time-periodic solutions. Thesé@regular time dependency of the laser intensity. However the
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V. CONCLUSIONS

We have studied the influence of delayed optical feedback
from a short external cavity on the emission dynamics of
semiconductor lasers using the Lang and Kobayashi rate
equation model. We have presented the bifurcation scenario
leading to RPP and we have given examples of bistability
between RPP and time-periodic or steady state solutions. We
have identified regions in feedback parameters space for
which RPP occurs. We showed that by increasing the delay
time the windows of RPP broaden, merge and finally shrink
when the EC round-trip time approaches the RO period. In-
terestingly, the largest region of RPP occurs for delays
around half of the RO period of the solitary laser. We also
i . _ ‘ , ' analyzed in detail the dependency of the period of the enve-
0 001 002 003 004 005 006 007 008 0.09 lope of the pulse packages on the laser and feedback param-
eters. We found that the period of RPP exhibits a minimum

FIG. 11. Bifurcation diagram dP in the route to RPP dynamics, fOr @ delay time close to half of the RO period. The period of
Fig. 10 in that it shows the complex dynamics that emerge after thélelays the RPP period exhibits oscillations which we identify
time-periodic solutions have bifurcated. A window of RPP dynam-as being due to the destabilization of the RPP in the vicinity
ics is shown with the arrow. of newly born external cavity modes. Finally, we used recent

. . . ) ) i ) continuation techniques for delay-differential equations to
third bridge is very different in that we find a window of RPP iqentify one of the bifurcation signature of RPP: the occur-

dynamics in between two more irregular or chaotic intensity,ace ‘of RPP is accompanied by a dramatic change in the

dynamics. This small region of RPP dynamics is indicated by, 104y of the bifurcation diagram resulting in the creation

Lhees anr;Vzrlgth'g}ribngg S)ma?rt%?)gfgg?ga$lzﬁaﬂgzuirr? Iﬁ; Vbai‘_bf a new type of Hopf bifurcation bridge between a stable
furcation diagram. ECM and an unstable saddle-type ECM.

The comparison between Fig. 10 and Fig. 11 therefore
suggests that one of the bifurcation signature of RPP appears
to be a Hopf bifurcation bridge between a mode and an an- ACKNOWLEDGMENTS
timode but in which the bridge connects to the second un-
stable Hopf bifurcation that appears on the antimode branch The authors acknowledge the support of the FNRS&I-
of the next ECM, in contrast to the previously reported typesgium), the IAP Program of the Belgian government, as well
of mode-antimode bridgg20-24,33. We have checked that as FWO-Flanders, GOA, OZR of the VUB, the EU project
this bifurcation signature of the RPP dynamics is present foSLAM, and COST Action 288 “Nanoscale and ultrafast pho-
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